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POLARIMETRY STUDIES OF IONOSPHERIC
MODIFICATION BY ROCKET BOOSTERS

1.0 INTRODUCTION

The ionic content of the atmosphere has a significant effect on radiowave propagation, particularly

at UHF and below. The mechanisms for introducing changes in the ionic content are of interest from a

scientific point of view and for its potential in exploitation scenarios, such as in alleviating deleterious

effects on radiowave propagation. Induced modification can take the form of producing, removing, or

(less likely) moving free electrons in the ionospheric layers that extend roughly between altitudes of 60

and 1200 km.

The natural ionic constitution of the earth's upper atmosphere is largely due to the solar flux in

the extreme ultraviolet band (XUV). As a result, electron concentrations are less at night than during

the day, but the ionosphere nevertheless persists because of the sluggishness of electronic loss

processes, especially at great heights where the atmosphere is extremely sparse. Attempts to produce

excess ionization by non-nuclear means have been successful, but the effects have generally been

short-lived and limited in geographical extent and altitude. Ion cloud experiments are typically

designed to illuminate the benign properties of the medium and thus to effect only minor perturbations

in the total system. Ion clouds have been used to investigate upper atmospheric and ionospheric

characteristics, and have been especially important in the identification of field aligned phenomena and

situation development.

The most extraordinary changes in the constitution of the upper atmosphere by non-nuclear

means has been achieved by the removal of ions through the introduction of copious quantities of

chemical reagents, such as water (H20) and hydrogen gas (H2) during rocket launches (Mendillo et al.,

19751. Introduction of such molecules into the upper atmosphere, say above 250 kin, where atomic

Manuscript submitted on Match 23, 1981.
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species are dominant, produces an enormous change in the chemistry that governs electron concentra-

tion. At these altitudes, electrons are present principally by virtue of vertical diffusion, having been

born via the photo-ionization processes that occur primarily at much lower altitudes. Electronic losses

near the maximum of the F2 layer and above are extremely small, because three-body processes are

rare, and the two-body loss processes are radiative, with a resulting low cross section. This situation is

drastically altered by the introduction of reagents, such as H20 and H,, which increase the probability

of electron loss by orders of magnitude. Furthermore, chemical reagent releases that occur at night are

even more effective, since they do not have to contend with the vertical diffusion of electrons from the

lower ionospheric daytime source. Examination of large and geographically extensive reductions in the

concentration ,nf electrons in the ionosphere can provide considerable information about the reconstitu-

tion of the electronic and ionic distributions in the upper atmosphere, and about sources and sinks.

Mendillo, Baumgardner, and Klobuchar 11979] suggested that the launch of the HEAO-C from

Cape Kennedy on 20 Sept. 1979 would provide an excellent opportunity to observe an electron content

hole" in the ionosphere. Furthermore, the event was to be nocturnal rather than daytime as in the

well-known SKYLAB case [Mendillo et al., 19751. The launch occurred at 0128 LUT (Bermuda) and

burned withii, the F-region at approximately 0130 LUT. NRL utilized two Faraday rotation polarime-

ters, both situated in Bermuda, to conc.uct its study of the IIEAO-C effect. One polarimeter was

directed toward ATS-3, while the other wan directed toward ATS-5. In addition to these TEC measure-

ments NRL also conducted HF communication and HF OTH radar studies of the event. Preliminary

papers which outline NRL's involvement have been presented at a "HEAO-HOLE"

workshop/symposium [Proceedings, 1980 a,b] in November, 1979, and the TEC effects were presented

at COSPAR [Goodman, 19801. The overall status of the IIEAO.HtOLF program has been r.,'viewed by

Mendillo, Rote, and Bernhardt 119801. Reilly [198Pi has described theoretical calculations which

represent a portion of the experimental data adequately. The theoretical model development is con-

tinuing.
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Recently it was suggested that an Atlas F launch of a NOAA satellite from Vandenberg during the

month of May 1980 would provide another opportunity for studies of rocket-induced TEC diminution

[Baumgardner, 19801. NRL located a polarimeter at a site by the Salton Sea in California with the

antenna boresighted to ATS-! to observe possible effects. The Atlas F launch occurred at approxi-

mately 0400 PST on May 29, 1980 and useful data was obtained.

It is the purpose of this report to describe the Bermuda and Salton Sea polarimetry experiments

and results, and to indicate how the data are being used to interpret the ionospheric response to booster

rocket perturbations. In the next section (Sec. 2) a brief account of background theory for the polar-

imetry experiment is given. In Sec. 3 the Bermuda polarimetry experiment for the HEAO-C is dis-

cussed and analyzed. The Salton Sea experiment for the NOAA-B experiment is similarly treated in

Sec. 4. Sec. 5 gives discussion and conclusions based on the results, and indicates future directions.

2.0 THEORY AND COMPUTATIONAL CONSIDERATIONS

The polarimetry experiment is based on the Faraday effect for a magnetoionic medium. In this

case the polarization vector of a linearly polarized radiowave is observed to rotate during its passage

through the ionosphere from a satellite source to a receiver on the ground. The radiowave frequency

(e.g., - 137 Mltz) is typically much greater than any electron plasma frequency along the raypath. In

this frequency regime the index of refraction is close to unity, raypaths are nearly straight, radiowave

polarization is essentially transverse, and characteristic wave polarizations are very nearly left- and right-

circular. Explicitly, the Appleton-Hartree refractive index and polarization reduce to [e.g., Budden,

19661

n.X1 X 1112 InL I X (I _ Tl : YI)
Rijl I ± ,2

for the radiowave whose electric field is given by

E- E,(z) exp ( w) + c.c. - i + Ej (2)
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along the raypath, which is assumed to be in the i direction at a point z along it (i.e., z is considered to

be a raypath coordinate). Upper and lower signs in Eq. (1) refer to left- and right- circular polariza-

tions, as denoted by the subscripts L and R, respectively. The expressions in Eq. (1) break down when

B and .; become very nearly perpendicular, but this is assumed not to happen here. The complex con-

jugate of the first term on the right in Eq. (2) is denoted by c.c. For the purpose of visualizing the

polarization rotation, we note that the two-dimensional vector in Eq. (2) has a simple phasor represen-

ta "n through the definition

F - E, +j E,. (3)

The linearly polarized radiowave is represented in terms of the characteristic circularly polarized waves

as

F(zt) = Fl(zt) + FR(zt), where

F. (zt ) = F, (z) exp- jw It 1 5 nt (s, o) ds- F. expjA)

FR (z.t) = F,,(t) expj U t- 1fo nR (s, w)ds] F. exp (QB) (4)
C

The point z specifies distance along the raypath, and the phasor rotation of F or FR is according to the

left-hand or right-hand rule, respectively, where the thumb of the hand is in the direction of propaga-

tion, and the fingers curl in the direction of polarization (i.e., phasor) rotation with time at a given

point. By combining the exponential terms the field can be written as

F(w) =2 F,, cosl BI expj 1A+(5)

which clearly shows the Faraday rotation of the polarization vector to be

A +B _ ufZ" I n - nR I ds= -f 5' X Y, dS, (6)2 2c 2c X ds()

where z, is the distance along the raypath to the receiver. In terms of the altitude variable h,

ds - - dh sec X, where X is the raypath zenith angle, and the amount of Faraday rotation in radians is

evaluated for MKS units as

= 2.9714 x 10 p. 2 ,

where I -- H cos 0 sec X Ndh = MNdh

Vfo Ndh = F4 T. (7)
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Here, h, is the height of the satellite, f is the radio frequency (IL-), 11 is the magnetic field strength

(amp. turns/m.), and N is the electron density (m 3). In the last line a mean value of M is extracted,

i.e., M, thus isolating the factor T, which is of physical interest. It is total vertical electron content

(TEC - in el/m 2 ) up to the height hj. It has been shown [Titheridge, 1972] that if Ml is evaluated as

the value of M at a height of 420 km along the raypath, with h = 2000km., then the last line of Eq.

(7) is accurate within 5% under most conditions. This is the procedure adopted in subsequent calcula-

tions. The "mean ionospheric point" or "ionospheric pierce point" at 420 km altitude will later be

referred to as the IPP. Changes in T, i.e. A T, due to ionospheric variations will thus be inferred from

measured changes in 0 according to Eq. (7):

AT= (33.654f 2/M) A.0 (MKS). (8)

!t is, however, often convenient to express Tin units of iOIbel/m 2 (i.e., "TEC units"), .fin Mttz (= 10'

liz), 6 in degrees (0), and Ml in oersteds, where H = I oersted is equivalent to a magnetic field B = I

gauss = 105 gamma in a nonmagnetic medium. In these units the preceding expression becomes

AT(lOI6el/m 2 ) = 7.3811 x l0- f (MHz)2  (0), (9)
M (oersted)

and this is the one we find most useful. The incorporation of second order effects (e.g., as an exten-

sion of Eq. ()) would not significantly enhance the accuracy of Eq. (9) for the high radiowave fre-

quencies of interest here (Ross, 19651.

From knowledge of satellite position, which is not strictly geostationary, and receiver location the

value of M' in Eq. (9) is calculated for the times appropriate to the polarimetry experiment according to

a standard magnetic field model [Cain and Sweeney, 19701. This enables TEC variations to be inferred

from measured polarization rotation changes according to Eq. (9). To fix the absolute value of TEC,

the "baseline ambiguity" must be removed, and this is done by comparison of the data with calibrated

TEC values routinely published by AFGL for nearby stations. This procedure will be specified below.

5+



REILLY, HARNISH, AND G(X)I)MAN

3.0 THE HEAO-C HOLE STUDY

3.1 Experimental Considerations

As seen in Fig. 1, Bermuda was in a unique position to observe TEC effects at aspects approxi-

mately perpendicular to the HEAO-C booster rocket track. Other polarimeter receivers were located

along the Florida coast to view rocket booster perturbations to the ionosphere at aspects approximately

parallel to the rocket track. The latter results are contained in recent HEAO-C Workshop Proceedings

reports [Proceedings, 1980 a,b]. Observation of the HEAO-C launch in the NRL experiment was made

from the NASA STDN Facility on the eastern end of Bermuda. Two separate polarimeter systems were

used. One system used a NASA crossed-yagi antenna on the roof which was pointed at ATS-5. A

similar crossed-yagi antenna was mounted on the roof and pointed at ATS-3. Both ATS-3 and ATS-5

are nominally geosynchronous satellites which have linearly polarized VHF downlinks.

,/ /

.- t.BERMUDA

Ct - . -Z.'' PAT I.P.P

20
..-- '- . HEAO-C

W 
T  -

3 /
10 , - I..X . -.l-' ,j

Ij'; 5I  ,
N> TO AT-5

70

NRL POLARIMETRY EXPERIMENT

Fig. I -Perspective of the NRL Bermuda polarimetry experiment
in a gnomonic projection
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The satellite signals were processed as shown in Fig. 2. The received signals were fed to quadra-

lure hybrids through coaxial cables phase-matched to within ±+ I . The hybrids' right- and left- hand

circular outputs were fed into Teledyne Micronetics Faraday Polarization Tracking Systems, Model 6501

B. These polarimeters electronically simulate antenna rotation at a rate of 18Hz by phase-shifting one of

the inputs with respect to the other. The signals are then combined in a 90' hybrid. After

amplification and filtering, the signal is phase-compared to a reference signal, and is then applied to a

dual phase meter with (h and 0 + 1800 outputs, where "h is the signal phase angle. These outputs,

along with an AGC output and a NASA 36 time code were then recorded on an 8-channel chart

recorder. Filter networks directly in front of the AGC outputs were modified to correct an impedance

mismatch with the chart recorder.

BERNPJA CONFIGURATION FOR HEAO-C LAUNCH

CROSSED-YAGI ANTENNAS

1A .4 9H A ; A

RECRE% R Z

GE1.

---------------............
---------------- --- =LOAD ---

QUAD HYBRID OWA HYBRID

Fig. 2 - Block diagram of the apparatus for the Bermuda polaranetry experimens

I . ..
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Because of the fact that the satellites are not strictly geostationary, the diurnal patterns of their

earth projections are figure-eights having latitudinal extents defined by the orbit inclinations, The ray-

path IPP projection on the earth's surface will also vary for each satellite. These effects are displayed

on a rectangular lat.-lon. grid in Fig. 3 for the day of the launch of HEAO-C, i.e., Sept. 20, 1979. The

figure-eights of the satellite and associated IPP earth projections are shown for the 24 hour period.

Also shown are the satellite-to-receiver raypaths at the times of closest approach of the rocket to the

raypaths. The times are given as GMT values, four hours later than local time. The booster rocket tra-

jectory is shown in Fig. 3 up to the point of burnout (the tip of the arrow).

35
BERMUDA EXPERIMENT (SEPT. 20, 1979) BERMUDA

25

- 15 -' ( 05 37 32.91

ATS-5 RAYPATH

0- lO 1~056832.7) "

ATS-3 !

ATS-5

0

-5

10 I
115 .110 -105 -100 -96 .16 -0 .75 .70 4 410

LONGITUDE i
)

Fig. 3 - Rectangular lat.-Ion, grid projection of the Bermuda polarimetry experiment. Features shown

are the diurnal patterns of the satellites and associated IPP points on the raypaths to Bermuda for Sept.
20, the rocket trajectory during its burn, and the raypaths at the times of closest approach of the rocket

Over a month's worth of data was obtained from the ATS-5 source. This was used as a control.

During the experimental period the satellite position varied, not only because of the aforementioned

figure-eight diurnal behavior, but also because of a slow drift of the figure-eight pattern itself over a

8-i
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longer period of time. It was, however, sufficient, to keep the antenna boresight directions for the

satellites fixed. Some parameters of the NRL radio beacon experiments are given in Table I.

Table I - NRL Radio Beacon Experiments
Station Location: Bermuda 32.35°N, 64.66°W

antenna beamwidths 30' nominal

Satellite source ATS-3 ATS-5
Location 100°W (nominal) 69°W (nominal,
Frequency (MHz) 136.47 136.47
Azimuth (deg) 239 (average) 191 (average)
Elevation (deg) 31 (average) 53 (average)
Sub-ionospheric point 29 *N (nominal) 30 'N (nominal)
@ 420 km 70'W (nominal) 65°W (nominal)
Time Coverage Sept. 17 - Sept. 23 Aug. 15 - Sept. 23

A sample of the strip chart data is shown during the period of the launch in Fig. 4. Time was

recorded in code at the bottom of the chart, and the other channels, starting at the top, were ATS-3

AGC, ATS-3 ",h + 180", ATS-3 "0", ATS-5 AGC, ATS-5 "b + 180", and ATS-5 "0". The ATS-3

AGC channel did not perform properly and was ultimately ignored. The ATS-5 AGC dynamic range

was approximately 23 dB. The series of "downward" ramps following the launch time are indicative of a

rapid reduction in TEC.

3.2 Data Presentation-The Control Period

The polarization angles were scaled at ten-minute intervals during the time coverage of the exper-

iment (cf. Table I), except during the HEAO-C launch period when the data was scaled at one-minute

intervals. The scaling accuracy is estimated as ± I mm on the chart paper or ±4' for the Faraday

rotation angle in this case. From an evaluation of Eq. (9), this translates to a TEC uncertainty of about

± 0.1 x 1016 el/m 2 . This should be viewed as a random reading error.

The scaled data were put on punched cards, and plots of the rotation angle were generated. As an

intermediate step, minimum values of k, which occurred a short time after the ItEAO-C launch, were

set at 55.5' for ATS-3 and 130* for ATS-5. This amounted to a removal of the baseline ambiguity in

Eq. (9), so that the relation between T and 4 is approximately given by Eq. (9) with the "A" symbols

removed. Details of the baseline ambiguity removal will be given shortly. The Faraday rotation angle

9



Fig 4 -Strip chart data for the period of the launch of III U-

data plots are given in Appendix A for ATS-5 and in Appendix B For ATS-3. The TFC values can he

calculated f'rom these angles h from the relation

1' (10''/lm2 ) -1.3747 x 10 2 h /Air (oersted)

The ATS-5 compilation is much larger: it was deemed sufficient to extend the control period for tinl

one of' the Bermuda polari meters.

A compilation of polarization and related geophysical data is given for ATh- S in 1'Tahles 2 and .3

and Ifor A FS-3 in Jahle 4. Maximumn and minimum values of (h for each da. are given ailong %kith their

times of' occurrence Also indicated are the l-rederickshurg A-indices, which measure daik tilagnctik
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Table 2 - ATS-5 Polarization Data and

Related Geophysical Data (August)

MAXIMUM MINIMUM

DATA A,, SSN __ TIME TIME
_ deg (Loc.) deg (Lot'.)

8/17/79 7 138 1742 1830 1070 2200
8/18/79 8 138 1966 2049 622 0530
8/19/79 40 310 1790 0000 874 2330
8/20/79 29 259 1754 1730 470 0509
8/21/79 28 335 1350 1839 562 0500
8/22/79 15 262 1622 1839 706 0339
8/23/79 7 261 1794 1330 730 0519
8/24/79 9 315 2094 141Q 558 0509
8/25/79 16 256 2030 1149 730 0509
8/26/79 16 236 1298 1309 822 0509
8/27/79 13 277 1798 1130 690 0509
8/28/79 13 221 1982 1249 654 0500
8/29/79 44 169 1754 1730 674 0530
8/30/79 13 169 1302 1039 630 0539
8/31/79 13 214 1678 1339 630 0519

Table 3 - ATS-5 Polarization Data and
Related Geophysical Data (September)

MAXIMUM MINIMUM
DATA ,4, SSN __ TIME __ TIME

I deg (Loc.) deg (Lot.)
9/1/79 7 216 1878 1319 626 0519
9/2/79 6 169 1614 1419 654 0509
9/3/79 7 1978 1239 590 0500
9/4/79 11 201 1934 1439 702 0519
9/5/79 14 208 1718 1109 574 0519
9/6/79 14 223 1634 1130 710 0539
9/7/79 4 231 1770 1519 530 0509
9/8/79 6 181 1830 1349 530 0519
9/9/79 3 150 1962 1309 550 0530
9/10/79 8 253 2046 1519 490 0500
9/11/79 14 190 1586 1330 646 0449
9/12/79 5 223 2006 1600 542 0519
9/13/79 6 247 2134 1500 554 0519
9/14/79 6 240 1746 1549 554 2349
9/15/79 7 243 1658 1300 386 0500
9/16/79 8 233 1610 1519 270 0509
9/17/79 10 202 1678 1419 362 0519
9/18/79 45 278 1254 0009 258 0609
9/19/79 7 282 1778 1330 166 0530
9/20/79 18 207 2146 1400 130 0530
9/21/79 16 194 1962 1100 534 0539
9/22/79 5 291 1790 1409 354 0509
9/23/79 5 395 1074 0749 530 0530

. , 11
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Table 4 - ATS-3 Polarization Data and
Related Geophysical Data (September)

MAXIMUM MINIMUM

DATE 4 SSN 0 TIME _S6 TIME
_ deg (Loc.) deg (Loc.)

9/17/79 10 202 1675 1400 935 0819
9/18/79 45 278 1421 0000 345 0500
9/19/79 7 282 1575 1300 203 0539
9/20/79 18 207 1911 1239 35 0230
9/21/79 16 194 1835 1109 583 0549
9/22/79 5 291 1761 1730 473 0530
9/23/79 5 395 1359 0749 831 L 0049

activity, and Boulder sunspot numbers (SSN). Note that times of occurrence are local times, four

hours earlier than GMT.

Inspection of the data in Appendix A for ATS-5 reveals daytime variations in TEC somewhat

larger in August than for September. On the other hand, the variation of minimum TEC Oust prior to

sunrise) is smaller in August than for September. In the data for Sept. 18, 1979, the values of TEC are

substantially reduced. This is a well-known result of high magnetic storm activity and related heating of

the thermosphere, which were prevalent conditions on Sept. 18. Many of the large scale features of the

ATS-5 data are in common with ATS-3 data in Appendix B.

Figure 5 is a plot of the average ATS-5 d1 for the "quiet" portions of the time period between 17

August and 23 September. Periods of TEC depression on Sept. 18 and 19, which resulted from mag-

netic storms, and on Sept. 20, which resulted from the HEAO-C launch, were excluded from this aver-

age. The extrema in the figure are smeared somewhat because of their time variation in the daily plots

of Appendix A. Of note is the enhancement in TEC which occurs at approximately 0500 GMT,

roughly five hours before the pre-sunrise minimum. This is apparently a regular feature of the midlati-

tude ionosphere. Kersley et al. 119801 have previously observed a post-sunset maximum in TI-C for

data obtained in Caribbean zone.

12
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36] ATS- 5. BERVItOf STATION " 7"o17 - 790923

0
EZ90C
G
P
E

@ l[~.. ... .. ........

..........

40(

8 2 4 ae 1 j;MT2 14 16 18 2 a

Fig. 5 - Average diurnal behavior of the ATS-5 Faraday rotation angle for the "un-

perturbed" ionosphere. Time period for the average was 8/17-9/23, 1979, excluding
the magnetic storm data in 9/18/0040Z-91911050Z and the llEAO-C depression
of TEC in 9/20/0540Z-9/20/1 IIOOZ

3.3 The Conversion to TEC

Faraday rotation angle data are converted to TEC values through Eq. (9), which for this case

becomes

T= C + 1.3747 x 10 2 do(°)/M (oersted), (I)

where T and C are in TEC units. The determination of the constant C amounts to the removal of the

baseline ambiguity previously mentioned. If the value of 6 at a particular time to is given as do in the

data, which has been essentially arbitrarity scaled during the recording period, and the TEC is known

from other information, the value of C (or an equivalent correction to 45) can be determined from Eq.

(I1). First, a set of M-values are needed, and the calculation of these proceeds as indicated in Sec. 2.0.

The results are included in Fig. 6 for ATS-5 and in Fig. 7 for ATS-3. In each of these tigures there are

three curves. The one defined by x-marks was provided to us by J. Klobuchar of AFGL before the

HEAO-C launch, and is appropriate to Sept. 5, 1979. The other curves were computed by us recently

from satellite one-line orbit elements for the satellites as inferred by J. Eisele at NRL from

NAVSPASUR five-line orbit elements. The one-line elements were appropriate to Sept. 20, 1979, the
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day of the HEAO-C launch, and the solid line M-factor curves in Figs. 6 and 7 are applicable for this

date. As a check on tie calculations, the one-line elements were used to determine a curve for Sept.5,

as identified by 0-marks in Figs. 6 and 7. This agrees quite closely with the AFGL curve, as hoped,

and the difference between the Sept. 5 and Sept. 20 curves is a result of slowly varying changes in the

satellite positions. These differences are small, however, compared to the diurnal variations exhibited.

Incidentally, the one-line orbit elements were previously used in the calculations of Fig. 3.

The constant C in Eq. (11) has been determined by trying to fit TEC values routinely tabulated by

AFGL for Patrick AFB near Cape Kennedy. The IPP earth projection for Patrick is shown in Fig. I.

The Patrick AFB TEC values are shown as the solid curve in Fig. 8 for several days surrounding the

HEAO-C launch. The constant C was initially chosen to obtain an e,.timated best fit of Patrick TEC

maxima for Sept. 14-17. The resultant ATS-5 TEC values, which were calculated from the Bermuda

data in conjunction with the AFGL M-factor values in Fig. 6, are shown as x-marks in Fig. 8. The

agreement with Patrick AFB values is good enough to allow some confidence in this procedure. The

notable exception, of course, is the TEC dropout evident in the Bermuda data near the pre-sunrise

minimum on Sept. 20. This is an effect of the HEAO-C launch, which is not seen in the Patrick TEC

values. Inspection of raypath geometries in Fig. I makes this plausible. Strong TEC depression on

Sept. 18 results from magnetic storm conditions, and there is some question of the validity of the

Patrick TEC values for a 24 hour period on either side of the HEAO-C launch [Klobuchar, 19791, but

these considerations do not seem to affect the validity of our procedure for removing the baseline ambi-

guity. While C, as initially determined, does a good job on the fit of TEC maxima during magnetically

quiet days preceding the launch, the minima values are not similarly well fit. Accordingly, a correction

of -2 TEC units was added to obtain a final ( value with an estimated uncertainty of ± 2 TEC units.

The final value of C adopted thus requires a shift of all the x-mark values in Fig. 8 by two TEC units

downward.

The calculated TEC values for the ATS-5 raypath on the morning of Sept. 20, the day of the

tJEAO-C launch, are shown in Fig. 9. Also shown are the unperturbed Patrick TEC" values with straight

Is
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lines drawn between values of the hourly tabultation. These unperturbed values are questionable in

view of the above remarks. The ATS-3 TEC values were similarly computed from the AFGL A-values

in Fig. 7. The constant C for this case was chosen to obtain agreement with the ATS-5 TEC value at

2.9 hours (GMT) on Sept. 20. The result of this is the ATS-3 curve in Fig. 10. While somewhat arbi-

trary, the above procedure is still estimated to give results within the estimated uncertainty of -- 2 TEC

units for the baseline ambiguity removal, which is shown by the double-arrowed line in Fig. 9. The ori-

ginal polarization angle data was corrected by the C values determined, and it is this corrected data

which appears in Appendix A and Appendix B. Hence, C 0 in Eq. (11) for these data.

TO
ATS

d

B"da. Ehr

SAT. O( hAkm) hlkm) dtkm) ..

ATS-3 6.6 389.549 429.089 47.391 33.565

ATS-5 6.8 484.464 597.86 219.948 53.395

Fig 10 - Determination of the orientation of the raypaths with
respect to the rocket at closest approach

Although the TEC curves for ATS-3 and ATS-5 were calculated from AFGL A-values for Sept. 5

in Figs. 6 and 7, instead of the slightly more accurate Sept. 20 Al values in these figures, the corrections

are deemed to be insignificant. A systematic 2% error in M values is not significant in a theory which

makes a possible 5% error in extracting an effective average Al values at a raypath altitude of 420 km.

17
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3.4 The HEAO-C Booster Perturbation

On September 20, 1979 NASA's third High-Energy Astrophysical Observatory (HEAO-C) was

launched from Cape Kennedy at 0528 (GMT) (lift-of time) by an Atlas-Centaur booster rocket sys-

tem. The second-stage Centaur rocket was ignited at an altitude of 211 km and burned up to an alti-

tude of about 501 km along the trajectory shown in Fig. 3, which was supplied to us after the launch by

NASA, Goddard [Ketterer, 19791. Along its trek through the ionosphere, rocket exhaust molecules

were injected at the rate of about 5.9 x 1026 s-' for [12 and 9.8 x 1026 s ' for ttO IMendillo,

Baumgardner, and Klobuchar, 1979].

Especially at F-region heights in the ionosphere, where the resident species of ions and atoms are

predominantly mona'4 omic, these molecules turn out to have a substantial chemical effect [Mendillo,

Hawkins, and Klobuchar, 19751. After charge-exchange collisions of these molecules with O ions, the

associated positive molecular ions very efficiently diminish the population of electrons in their vicinity

through a molecular dissociative recombination process. As a manifestation of this electron removal,

TEC records show a drop-out effect, as seen in Figs. 4 and 9 and in the polarization angle data for Sept.

20 in Appendix A and Appendix B.

The spatial and temporal development of the ionosphere hole may be partially understood from

the experimental data and from calculation of the relative geometry of the booster rocket trajectory with

respect to the satellite-to-receiver raypaths (cf. Fig. 3). The intersection of the rocket trajectory and

raypath projections on the earth occur at the times indicated in Fig. 3. The latitudes and longitudes of

the intersection points, as well as the associated azimuthal and elevation angles of the raypaths from

Bermuda, are given in Table 5. These values were used to calculate parameters of physical interest for

the orientation of the rocket with respect to the raypaths at the distances of closest approach, as given

by Fig. 10. The parameters are: the angular displacement rb from Bermuda to the rocket, the altitude h,

of the rocket, the altitude h of the raypath point and :ts distance from the rocket d, and the angle away

from zenith -y of the line connecting the rocket to the closest approach point on the raypath. The TIC"

18
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Table 5 - Raypath Parameters for Intersection
with the Rocket Trajectory

Raypath Look Angles
Intersection Pts. from Bermuda

Lat. ('N) Lon (°W) Az (0) El. (0)

Sat.

ATS-3 28.038 70.512 231.19 26.921

ATS-5 26.583 65.493 187.43 47.574

diminution effect is expected to be relatively large for ATS-3, since the rocket came within 48 km of

the ATS-3 raypath, and this is observed to be the case in Fig. 9. The ATS-5 effect is surprisingly large,

however, considering that the rocket distance of closest approach to the raypath is 220 km. The

preceeding computations were carried out for a standard ellipsoidal earth model [Bate, lueller, and

White, 19711, but the results were found not to be significantly different for a spherical earth approxi-

mation.

It is noted with some interest that the TEC in Fig. 9, as observed along the Bermuda to ATS-5

path, continues to slowly decrease following the abrupt drop near the time of the HEAO-C launch. The

TEC corresponding to ATS-3 drops more precipitously, as would be expected, but thereafter does not

continue a monotonic decline. This indicates that the TEC along the ATS-3 path is virtually exhausted

(<2 x 1016 /m 2 ) following the event, whereas the ATS-5 value (-1017 electrons/M 2) is still subject to

normal diurnal "influences." Note in fact that the TEC for the ATS-3 path begins to increase by 0230

local time (i.e., 0630 GMT) and continues this pattern until approximately 0530 where it reveals a

slight pre-sunrise depression. Close inspection of both curves reveals an oscillation in the TEC with

maxima near 0320 and 0500. There is no reason to associate this oscillation with the modification

event. Since the oscillation is roughly in phase for both paths, then it is possibly the manifestation of a

Travelling Ionospheric Disturbance (TID) propagating in the North-South plane. Indeed, Kersley et al.

119801 have observed TEC oscillating prior to sunrise to be a regular feature of the Caribbean zone.
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A second peculiarity of the IIEAO-HOLE event is the fact that the usual sunrise enhancement in

TEC occurred somewhat earlier on the day of the event than on other control days. This peculiarity

will be discussed later. Note also that the AGC trace for ATS-5 in Fig. 4 exhibits an increase in the

"scintillation" amplitude following the event. (Recall that the ATS-3 record was inoperable.)

3.5 Theoretical Considerations

The sharp TEC reduction edges in Fig. 9 near 0536 are correlated with the passage of the rocket

beneath the raypaths. During this time Faraday rotation angles were being measured at one-minute

time intervals, and so it is possible to magnify the behavior of these reduction edges. It is thus oppor-

tune to test theoretical models for the reactive diffusion flow of rocket exhaust out to the raypaths dur-

ing the initial hole-formation process. On a longer time scale the hole is coupled to the protonsphere

and the rest of its surroundings in a hole-filling or motion process. For now, however, only the hole-

formation problem will be addressed.

In Figs. II and 12 are TEC reduction edge values for ATS-5 and ATS-3, as inferred from Faraday

rotation data measured at one-minute intervals. These values, given by the dots in these figures, are

inferred from the Sept. 20 M-factors (solid curves in Figs. 6 and 7) and the polarization baseline values

already established. The solid-line curves in Figs. I I and 12 are based on calculations which will be

described later. Rocket lift-off (/) and closest approach (c.a.) times are indicated by vertical tick-marks

in these figures.

In order to form a theoretical model for the TEC daua (given by the dots in Figs. II and 12) for

the hole-formation, it is necessary to know raypath geometries, the rocket trajectory, and parameters of

the rocket exhaust diffusion and electron recombination chemistry. The raypath geometries have

already been deduced from the satellite and receiver coordinates. The post-launch rocket trajectory was

furnished to us [Ketterer, 19791 as a numerical computer tabulation. This information has been con-

densed by least-squares fitting of the data for latitude, longitude, and altitude of the rocket vs. time by

20
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24 -fca.

ATS 5

22

18 THEORY #1

16
EXP.

U)14

12

10
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2 CA.

0

TIME (GMT)

Fig. I I -ATS-S raypath TEC reduction edge following the FlEAO-C
launch. Experimental values are shown by dots, and diffusion theory
results by the solid line. Tick marks show liftoff (1) and closest ap-
proach (ca.) times for the booster rocket. See text.
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Fig. 12 - ATS-3 raypath TEC rtduction edge, similar to Fig. I I

third order polynominals in time intervals which span roughly 100 seconds on either side of the times

of closest approach of the rocket to the raypaths. Each function is thus represented as

f(t) A0 + AI (t - to) + A2 (1 - 1o)2 + A 3(1 - to) 3

(ti K' t < tf) (12)

in a particular time interval, where the expansion coefficients differ from one interval to the next. Each

interval spans 40 seconds, and virtually no loss of accuracy is suffered in going from the original

numerical tabulation of the rocket trajectory to its representation by Eq. (12). The least-squares

coefficients are given in Table 6. This is also a convenient polynomial interpolation for computations.

The times in Table 6 are seconds elapsed from rocket ignition, which occurred about I1 seconds prior

22
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Table 6 - IIEAO-C Rocket Trajectory

Times(s) Coeff. Lat ('N) Lon (°W) Alt. (kin)
t, = 360 40 .2844700+02 .7342239+02 .3235836+03
to = 380 .41 -.3177181-02 -.3402256-01 .9012024+00
t, = 400 .4, -.1957200-04 - .2565766-04 -.1095331-02

,43 -.4808718-07 .4793922-07 .3797260-06

t, = 400 , .2828544+02 .7201993+02 .3579588+03
too = 420 /41 -. 5009446-02 -.3620018-01 .8207689+00
t, = 440 .42 -.2595862-04 -. 2547159-04 -.9768056-03

,43 .5307621-07 .2283004-06 -.3425513-05

t, = 440 40 .2804170+02 .7053048+02 .3891821+03
to = 460 A, -.7217561-02 -.3834927-01 .7425942+00
t, = 480 .42 -.3154827-04 -.2894422-04 -.9153887-03

.43 -.2548177-06 -.1069609-06 -.1063423-05

t = 480 , .2769605+02 .6895017+02 .4173544+03
to = 500 ,4 -.1006428-01 -.4066669-01 .6653089+00
t, = 520 ,42 -.3877873-04 -.2776726-04 -.9726081-03

/43 -.2305383-06 .1620504-06 .2942168-05

t, = 520 A o  .2722391+02 .6728029+02 .4424225+03
to = 540 ,4 -.1360834-01 -.4283429-01 .5857062+00
t = 560 A2 -.4833377-04 -.2692919-04 -.1022886-02

A3 -.1039103-06 -.7401390-07 -.2355698-05

t, = 560 A o  .2659643+02 .6552412+02 .4641209+03
to = 580 A, -.1791637-01 -.4493112-01 .4965629+00
t = 600 A2 -.5808527-04 -.2534641-04 -.1234636-02

A3 -.7949663-08 -.3452735-07 -.1411592-05

t = 600 Ao  .2578113+02 .6368800+02 .4818781+03
t, = 620 A, -.2304305-01 -.4685309-01 .3878363+00
t, = 640 A2 -.7249729-04 -.2335664-04 -.1520375-02

A3 -.1543421-06 .1590936-06 -.3994210-05

t, = 640 Ao .2461925+02 .6158653+02 .4956792+03
= 664 A, -.3002765-01 -.4863451-01 .2432487+00

tf = 686 A2 -.8727188-04 -.1757357-04 -.2076613-02
A3 -.4812080-07 .8732465-07 -.2904853-04

to lift-off at 0528 at Cape Kennedy. The closest approach times are at 460.495 sec for the ATS-3 ray-

path and 580.692 sec for the ATS-5 raypath. Rocket burnout is about 712 sec after ignition.

For calculation of the TEC dropout effect, it is necessary to specify a transport model by which

rocket exhaust molecules ultimately reach the raypath and subsequently remove electrons along it. A
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simplitied approach is to assume that rocket exhaust molecules are immediately thermalized through

collisions with the ambient background gas, and subsequently diffuse out to the raypath. This is in the

spirit of* earlier calculations ([Mendillo et al., 1975], [Forbes and Mendillo, 19761 and IMendillo and

Forbes, 19781). An appropriate expression for the gas concentration resulting from a point release is

given for times not too large by [Bernhardt, 1979a]

fl . 14 .l= - No J_ p - 3 + 1 .4 (z~t);
(4,, ex D, 1,2' 4Ha 21

.4 (z.) = Al(z)t + .4,(z)/(4Doi).

.41(z) = p, + - , 1 - exp [z/2H,,]

,42 (z) = 4H,, (I - exp[- z/2Ha]) 2 + (x2 + y2) exp [-z/2H.] (13)
Here, N0 molecules are released at the origin at i = 0 in an atmosphere whose density varies exponen-

tially in the z direction as exp [-z/H,,. The parameters Do and //,, are the diffusion coefficient and

scale height, respectively, of the atmosphere at the point of release, and H1, = AT/m,g is the scale

height of the injected gas. The parameter 0 , is associated with chemical loss of the injected species

through collisions with ambient molecules.

Equation (13) is applied to find the rocket exhaust concentrations at points along the raypath for

times up to ten minutes past the time of closest approach of the rocket. This is done at each point

along the raypath by replacing No in Eq. (13) by N0 8t and integrating along the rocket trajectory given

in Table 6, i.e., such NO Bt puffs, where 81 = 2 seconds, are summed along the rocket trajectory by

Simpson's Rule. In this way the concentrations of water molecules n,,(r,t) and hydrogen (H2 )

molecules n11(r) are found along each of the raypaths for ATS-3 and ATS-5. The parameters used for

N were 5.9 x 1026 S- I for H2 and 9.8 x 1026 s-1 for 1120 [Mendillo, Baumgardner, and Klobuchar,

19791. The diffusion coefficients Do are inversely proportional to the neutral ambient background den-

sity fla(X), which consists principally of oxygen atoms, and thus depend on the altitude of release.

They also depend on background thermospheric temperature. For this calculation the values noDe -

1.43 x 1020 cm -'s-I for H2 and 2.32 x 1019 cm- I s- ' for H20, which are appropriate for an exospheric

temperature T_ - 1500'K, have been taken from Schunk [19781. These values are consistent with

24



NRI MiMORANI)UM REPORT 4517

those used by Mendilio and co-workers The model atmosphere used to evalutate 1), I1,,, and II, along

the rocket trajector, %has taken from Banks and Kockarts 119731 for T, = 1500K. The values for 3,

in Y-q. (13) were computed at the raypath. as discussed below.

It remains now to specify the recombination chemistry. Hydrogen and water molecules at the ray-

path remove electrons in basically a two-step chemical process. First, molecular ions are formed

through charge exchange collisions with W ions:

A,,

W 4 11, 0111 + 0

01 + I() _ 1120 + ( (14)

This is followed rapidly by dissociative electron recombination with these molecular ions:

()If + 0 + 11

[112 + ()

HA.(Y + e I, + ()I (15)

Electron recombination with atomic ions is a much less efficient electron removal process. Loss of 112

occurs through the reaction

11, + 0 ) Off + ff. (16)

with no comparably significant loss process for 110 [Mendillo and Forbes, 19781. The recombination

chemistry is further discussed by Zinn, Sutherland, and co-workers 11980 a,b), from whom the rate

constants in Eqs. (14) and (15) were obtained. They point out that the products of recombination with

11,0 in Eq. (15) can result in the removal of another electron, but this does not appear to be impor-

tant in the present case. For one thing, the reaction channel which results in the 11 product is only

about 15% efficient. Furthermore, the other reaction channel which results in the formation of OI, as

also in the decay process of Eq. (16), frequently leads to the form ., of ()2 by reaction with 0, and

02 is relatively slow to transfer an electron to 0' to form 02. lence, on the lime scale of interest here

(-1 0 min), this process is unimportant. It appears, therefore, that the simplification of Eqs. (15) and

(16) for the recombination chemistry will not result in any serious error.
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The loss process of Eq. (16) is related to the loss parameter #H, in Eq. (13). The relation is

PH2 = Y h,,,

where ii,, is some average background oxygen atom concentration; P, is treated as a constant in the

derivation of Eq. (13). Actually, the oxygen concentration varies in the altitude interval between points

on the rocket trajectory and raypath, but in the calculation of f3, the oxygen concentration at the raypath

point has been used. Regardless, this loss effect turns out to be unimportant in the calculation of TEC

reduction for the raypaths considered here and for the time interval considered. This is consistent with

the findings of Forbes and Medillo [FM 1976, MF 1978].

The calculation of TEC reduction proceeds, as mentioned above, by first using Eq. (13) to deter-

mine the space-time dependence of H2 and 1-20 concentrations along a raypath. This information is fed

into the rate equations associated with Eqs. (14) and (15)i

o[__o =- kH[H2 + k,, [H20]1 1O+]

0 fe- = { [OHI + a, [H20+I [el

8 [O1l _ kHIH2J 10 1 - aH le-1 [OH +J (17)
0t

a H201 = kJH 2OI 01+ - a, leI [H20+,

at

where square brackets refer to the concentration of the molecule represented by the enclosed symbol.

These coupled first-order differential equations are numerically integrated by the Runge-Kutta method

to yield the concentration of 0, e-, OW+ , and H20
+ as a function of time at each of several points

along the raypath. The procedure thus far invokes a decoupling of the diffusion and recombination

chemistry effects which has been previously justified in a separate investigation (not related to iIEAO-

C) by Forbes and Mendillo 119761 for the sort of time period of interest here (up to ten minutes past

the closet approach times). The calculation of TEC at any time then involves only an integration of

electron concentration in the altitude coordinate along the raypath.
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Another necessary ingredient of the calculation, beginning with the solution of the rate equations,

is a model ionosphere which specifies the initial (and equal) O and e concentrations along the

raypath. Unfortunately, not much is known about the unperturbed ionosphere along the ItEAO-C

booster rocket trajectory, other than its TEC. Calculations were ultimately performed for different ion-

spheric models and rate constant values. The results for a specific set of parameters are shown as the

solid-line curves in Figs. II and 12. The diffusion parameters values for these curves were mentioned

above. The rate constants uf Eqs. (14)-(16) have the values in Table 7, and the model ionosphere for

these curves is taken to be a Chapman distribution which integrates to 22 TEC units. Hence, the elec-

tron concentration n,. is a function of altitude t according to

nt, (h) = Nm exp ((1/2) [1 - y - exp (-Y)

y = (h - hm)/H, (18)

where the parameters for the scale height H and maximum concentration N, at the altitude r,, are

given the values

N, = 8.873 x 105 cm -3 . hm = 170 km. and H = 60 km.

in the calculations for the solid curves in Figs. I1 and 12. It is seen that the calculations essentially

agree with experiment for ATS-3, but disagree with experiment for ATS-5.

Table 7 - Rate Constants for
the Recombination Chemistry

Constant* Units Valuet
knl 2.0

10- 9cm3 s-
k. 2.4
aH 2.0

10-1 cm s-1

a, 3.0

YH IO- 1 2 cm 3 s- 2.0

*Nomenclature given by Eqs. (14) and (15) in text
tAll from (Zinn and Sutherland, 19801, except yl
taken from [Mendillo and Forbes, 19781

Some progress in understanding the preceding discrepancy between calculations and experiment

for ATS-5 can be made by varying parameters of the calculation to see what happens. This is done in

Table 8, where the first column labels the parameters x, the second column gives the units of x, the
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Table 8 - TEC Response to
Parameter Changes

x x Xo Sat
Parameter Units Unperturbed Ax ATS- A TEC (10)

nODH O gcm-s -  14.3 -3.3 3 -.069
5 -.039

naDK,. 10'cm -s -  2.32 -.52 3 .486
5 .279

kH 10- 9 cm3 s- 2.0 .4 3 -. 184
5 -. 163

k, !0 9-cm 3 s- 1 2.4 -.4 3 .309
5 .168

a H 10- 7cm 3s-l 2.0 .5 3 .054
5 .003

a 10-7cm 3s - 1 3.0 -.5 3 .003
5 .009

YH 10-1 2cm3s -W 2.0 -2.0 3 -.466
5 -. 192

W km s-1 0. .1 3 -.900
5 -.987

WE km s - 1 0. .1 3 -. 250
5 -.401

third column gives the unperturbed value of x in these units, the fourth column gives the change Ax in

these units, the fifth column labels the satellite for which the calculation was performed, and the sixth

column gives the change in TEC after 10 minutes, i.e., A TEC (10) in TEC units due to the change A .

Calculations were performed for the model ionosphere specified by Eq. (18) and the ;1arameters cited

there. Two new winds parameters WN and Wp. appear in Table 8. These are northerly and easterly

neutral wind speeds at the rocket altitude. The wind calculations assumed that the diffusion patterns

were carried at the wind speed. Evidently, a north ionospheric wind could enhance the T-" reduction

rate by blowing the rocket exhaust molecules toward the raypaths, which pass over the rocket trajectory.

Some parameter changes have larger effects than others in Table 8, but these sorts of parameter

changes, whose magnitudes correspond roughly to plausible uncertainties, do not seem capable of

bringing the calculations into agreement with experiment for ATS-5. It is seen from Fig. II that a

change ATEC(O0) =z -4.6 units is needed for this purpose. In order to assess the effect of changing
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the ionospheric model, calculations were repeated for three other ionospheres, all of the 'orm of Eq.

(18), but with different parameters. They are all chosen, however, to integrate to 22 TEC units. The

results are given in Table 9 for the various model ionospheres in Fig. 13. The other parameters in (he

calculation were given the unperturbed values in Table 8. The values of Table 8 and Figs. I I and 12

were calculated for the model #1 ionosphere in Table 9, which is shown as the solid curve in Fig. 13.

Table 9 - TEC Response to Model Ionosphere Changes

# N (105 cm-3 ) h,, (km) H (km) ATS- 22-TEC (10)

1 8.873 370 60 3 12.74
5 2.01

2 9.330 305 40 (h < i,,) 3 10.54
65 (h > h,,) 5 1.49

3 9.330 370 40 (h < h,) 3 13.41
65 (h > h,) 5 2.29

4 8.837 409 50 (h < h,,) 3 13.11
65 (h > h,,) 5 2.85

TEC(0)-TEC( 10)
Experiment: 3 16.05

5 6.60

Table 9 indicates a substantial dependence of the ATS-5 results on model ionosphere, but nowhere near

the amount required to explain the discrepancy between calculations and experiment for this case.

There have recently been calculations by other authors IZinn, Sutherland, et al., 19801 which

have aimed to simulate the Bermuda ttEAO-C polarimetry results of the present report, a preliminary

version of which were presented in November, 1979 [Proceedings, 1980 a,bI. Although the computa-

tion model used by these authors is apparently two-dimensional, as contrasted to the brute-force three-

dimensional calculations discussed above, similar results for the hole-formation phase are obtained.

They obtain substantial agreement with the ATS-3 results for the TEC reduction edge, but find it

difficult to calculate a reduction edge for ATS-5 which is steep enough. Nevertheless, their simulation

of the ATS-5 reduction edge seems to be closer to the experimental results than ours, apparently due in

some measure to the replacement of diffusive (thermalized) rocket exhaust expansion by free ballistic
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Fig. 13 - Model ionospheres used in diffusion calculations The solid line curve

is used for Fig's. 10 and II

expansion for early times (relative to the point of release) in their model. Incidentally, their model

icnosphere is quite similar to model #4 in Table 9. Indeed, the inclusion of free ballistic expansion at

early times is expected to be especially appropriate for high altitude releases, such as that for ATS-5 (cf.

Fig. 10). The transition from free rocket exhaust expansion to diffusive Lxpansion has recently been

tret(ed theoretically by Bernhardt 11979 b]. It is intended to incorporate these effects into the present

calculational model at a future time.

Other effects not considered in the calculations are the variation of results with model atmosphere

(e.g., neutral density) changes and rocket trajectory changes. The accuracy of our assumptions about

these is unknown. Certainly we have used the best information available about the rocket trajectory,

and the neutral atmosphere data is apparently not available. Another curious feature in the ATS-5 data

(cf. Fig. Il), not encompassed by the calculations, is that a TEC reduction effect starts about 3-4

minutes before the time of closest approach of the rocket to the raypath. The cause of this effect is not
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understood, although it is very likely not related to the rocket. It is possible that a significant fraction

of the discrepancy between calculations and experiment for ATS-5 is due to effects of this nature.

4.0 THE NOAA-B HOLE STUDY

4.1 Experimental Considerations

Figure 14 shows geometrical aspects of the Salton Sea polarimetry experiment. The receiver was

located at the Salton Sea Instrument Laboratory, Salton Sea Naval Test Facility, California, in order to

observe Faraday rotation perturbations introduced on the ATS-I VHF transmission at 137.35 Mllz.

The diurnal figure-eight pattern of ATS-1 and the corresponding pattern of the ionospheric pierce point

(IPP) at 420 km altitude on the raypath between satellite and receiver are also shown in Fig. 14.
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Fig 14 - Rectangular projection of the Saltor Sea polarimetr, experiment, similar to Fig 3
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The NOAA-B launch occurred at 10:52:59 UT on May 29, 1980 and followed a trajectory

indicated in Fig. 14. The ATLAS-F booster rocket shut off its sustainer engine 378 seconds later

(10:59:17 UT) at an altitude of 434 km. This burnout point, as indicated by the tip of the arrow in Fig.

14, was the closest approach of the rocket exhaust source to the raypath, which is shown in Fig. 14 for

1100 UT.

Fig 15 - Salton Sea receiving antenna Photo shows the
water tower nearby,

In the polarimetry experiment a crossed-yagi antenna was mounted on the roof and pinted a

ATS-I. The antenna was fixed at an azimuth of 227.23' and an elevation of 38 So' during the .uurc

of the experiment Look angles to the satellite from the receiver are aclually computed to ,ar. fron

222 1' to 240.2' in azimuth (224.9' at 1100 lT) on MaN 29 and from 29.1' to 45 6" in elevation (31 6

at 1100 (UT), Because of an antenna heamwidth greater than 30'
l at its 3 db points, howe er. motion of

the satellite position relative to the fixed boresight was an unimportant influence on the data. Although

a 40 foot metal water tower was located nearby, it caused no apparent signal distortion A picture of-

the antenna and ,ater lower is shown in Fig. 15.

he received signal was fed into a diode switch through cables phase-matched to ± I . The switch

received its logic from an AF(I[ Polarimeter Adapter and simulated the antenna rotating at a 27 Ili

32
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TTO

1 8.7m F1" UI

Fig 17 - Block diagram of the apparatus'for the Salton Sea polarimetry experiment Il

The conversion of Faraday rotation angle to TEC occurs by means of Eq. (9), which is for this

case

AT (101 6 el/m 2) = 1. '924x 10- A- ( )/,T (oersted) (19)

fhe M-factors for a raypath altitude of 420 km. are calculated, in the manner specified in the ttEAO-C

discussion, to have the diurnal variation for May 29 shown in Fig. 18. The baseline ambiguity is

removed, i.e., the constant C in the equation corresponding to Eq. (11) is determined, by fitting calcu-

lated TEC to values for Laposta, Ca. and Boulder, Col routinely published by AFGL. The result is

shown in Fig. 19, where it is seen that the corrected Salton Sea TEC calculations fit the minima for

both Laposta and Boulder quite well. More significantly, the TEC curves for Boulder and Salton Sea

almost coincide. This is surprising in view of the fact that Laposta is significantly closer to the Salton

Sea receiver site (cf. Fig. 14) than Boulder. The published lat.-lon. coordinates for the IPP points are

(30N, 116*W) for Laposta and (37"N, 106*W) for Boulder. In any event, the baseline ambiguity has

been removed by this procedure to within an estimated uncertainty of ± I TEC unit. The resultant

TEC curves for the Salton Sea receiver are shown for May 27-29 in Figs. 20-22 and in composite form

in Fig. 23. As in App. C, local time values are used (Pacific Standard Tune) which are seven hours
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Fig. 19 - Comparison of Laposta and Boulder TEC with Salton Sea TEC, as calculated from the
polarimetry data to obtain the best fit of Laposta and Boulder TEC minima. The fit with Boulder
TEC is almost exact.
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Fig. 21 - TEC determination for May 28
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earlier than GMT or UT. The sharp TEC reduction edge near 0400 PST on May 29 characterizes the

booster rocket perturbation.

4.3 The NOAA-B Booster Perturbation

With the use of the analog tape recording of the data the TEC reduction edge on May 29 can be

further specified, and the time scale can be stretched out. The result is shown in Fig. 24, which also

shows tick marks for the time of launch (I) and closest approach (c.a.) of the rocket exhaust source to

the raypath. This is indicated by the tip of the arrow in Fig. 14; the booster rocket burned out before it

reached a lat.-Ion, intersection with the raypath. At the time of burnout, however, the rocket was not

too far from the raypath. With respect to parameters defined in connection with Fig. 10, the height of

the rocket at burnout was h, = 433.7 km., the height of the closest raypath point was h - 543.3 km,

the distarce of closest approach was d - 173.0 km., and the angle away from zenith from the rocket to

the closest raypath point was y - 52.10. These numbers are based on the post-launch trajectory

obtained from J. Baumgardner and the raypath geometry calculated from the receiver and satellite posi-

tions. The raypath geometry at 1100 UT is specified in Table 10.

As seen from Fig. 24, the TEC reduction due to the launch appears to be about 4.5 TEC units in

10 minutes following the closest approach time. We have not attempted to simulate this by calculations

yet, but the amount of TEC reduction seems to be roughly consistent with the HEAO-C observations.

A noteworthy feature in Fig. 24 is the rather sharp rise in TEC just preceding the TEC reduction edge.

This was not observed in the HEAO-C case and is of unknown origin at this time.

5.0 DISCUSSION AND CONCLUSIONS

The polarimetry results, in conjunction with calculations which specify raypath orientations with

respect to the booster rocket trajectory, have indicated rapid and dramatic TEC dropout response to

chemical modification by rocket exhaust molecules. For releases in the F-region of the ionosphere,

significant TEC reduction is seen to develop out to hundreds of kilometers from the rocket centerline
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SALTON SEA, CALIFORNIA ATS-1 05/29/80
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Fig. 24 - ATS-l raypath TEC reduction edge following the NOA A-B launch.
as inferred from the Salton Sea polarimetry data

Table 10 - Salton Sea
to ATS-1 Raypath Parameters

(1100 UT, May 29)

Description Entity Value
[at. 33.20940N

Receiver
[on. I11.8707OW

Coordinates
Alt. 0

Look Angles Az. 224.9130
from
Receiver El. 31.57460

on a time scale of ten minutes or so. These findings are consistent with observations by others

(Proceedings, 1980 a,bJ.

The polarimetry experiments and other experiments of opportunity of this type not only are rela-

tively efficient and inexpensive ways to assess the environmental impact of booster rockets, which is of
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interest, for example, to the proposed Solar Power Satellite program [Proceedings, 1980 a,b], but also

they provide empirical results against which calculational models for ionospheric modification can be

tested. This report has tested a particular diffusion model for rocket exhaust expansion which conceiv-

ably could explain the polarimetry data on the short time scale (< 10 min) associated with the TEC

reduction edge. On longer time scales, hole-filling and other modification effects are anticipated. The

model tested does not include such effects as ionosphere-protonosphere coupling (taken into account by

[Zinn Sutherland, et al., 1980]), Hence, these longer time scales are outside of the capability of the

calculational model tested here, in which rocket exhaust molecules are immediately thermalized by col-

lisions with ambient species and execute motion describable by mutual diffusion theory thereafter. rhis

simplified model is, nevertheless, carried out in a relatively thorough manner, it is a full, numerical.

three-dimensional integration of the rocket exhaust effect along the trajectory of the rocket and along.

the raypaths under consideration. Any defect in the agreement between experiment and calculations

therefore tends to be an accurate indicator of the shortcomings of the basic physical assumptions under-

lying the model. We say "tends to be," because the polarimetry experiments are not as controlled as

laboratory experiments- certain parameters of the model are not completely known. Such things as

wind speeds, atmospheric densities and temperatures, and rocket trajectory specification errors are not

precisely defined. A repeated testing of the model against the empirical results of several experiments

should, however, help to remove these uncertainties in the statistical sense. More supporting measure-

ments in future experiments would also help.

The calculational model employed here has been found to be adequate for the ATS-3 raypath

through the inner portion of the HEAO-C hole, but it has been found lacking for the ATS-5 raypath,

which is further away from the hole axis. By studying the effects of parameter variations within the

model, and by comparing with results obtained by Zinn, Sutherland, et al. 11980], we conclude that the

ATS-5 results could be indicating deficiencies in the simplified diffusion model for rocket exhaust

expansion. It is probably necessary to take account of the transition from free, ballistic expansion to

thermalized diffusive expansion for many high altitude releases, as considered theoretically by
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Bernhardt 11979b]. This is intended to be the next order of business in calculations for HEAO-C and

NOAA-B TEC reduction edges.

There are other efects in the polarimetry results for HEAO-C and NOAA-B which are in need of

explanation. We have already alluded to a TEC depletion effect which precedes the rocket passage in

the ATS-5 case for the HEAO-C hole and to a TEC enhancement effect which precedes the TEC reduc-

tion edge in the case of the NOAA-B hole. Another curious feature of the polarimetry data was

noticed for both the HEAO-C (cf. Appendix A and Appendix B) and NOAA-B (cf. Appendix C and

Fig. 24) cases. There is a tendency for the TEC recovery from the dropout induced by the booster

rocket to begin roughly 1/2 hr before the normal sunrise recovery. This premature sunrise effect may

result from the detail- of ,he ionosphere-protonosphere coupling, or it may result from hole motion

away from the raypath. This is a matter for future investigation.
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Appendix A

This appendix contains the Faraday rotation data for ATS-5 obtained at Bermuda between Aug. 15

and Sept. 23, 1979. The vertical axis is the Faraday rotation angle (h in degrees scaled at ten minute

intervals, TEC can be calculated from Eq. (10), but the data given for 46 must be regarded as uncertain

within ::t40*, which uncertainty is inherited from the procedure for removing the baseline ambiguity

(cf. Sec. 3.3).
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Appendix B

This appendix contains the Faraday rotation data for ATS-3 obtained between Sept. 17 and Sept.

23, 1979. The description of the Appendix A data applies to this data set also.
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Appendix C

This appendix contains the Faraday rotation data for ATS-] obtained at the Salton Sea site

between May 26 and May 29, 1980. No attempt is made to remove the baseline ambiguity in this data. LI

The time axis is local time (PST), 7 hours earlier than GMT or UT.
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